Introduction to baricentric geometry with applications.

Introduction to barycentric geometry with applications.
 Arkady Alt
 \section*{Some preliminary facts.}

First recall that any two non collinear vectors $\overrightarrow{O A}, \overrightarrow{O B}$ create a basis on the plane with origin O, that is for any vector $\overrightarrow{O C}$ there are unique
$p, q \in \mathbb{R}$ such that $\overrightarrow{O C}=p \overrightarrow{O A}+q \overrightarrow{O B}$ and we saying that pair (p, q) is coordinates of $\overrightarrow{O C}$ in the basis $(\overrightarrow{O A}, \overrightarrow{O B})$ and $\overrightarrow{O C}$ is linear combination of $\overrightarrow{O A}$ and $\overrightarrow{O B}$ with coefficients p and q.Also note that point C belong to the segment $A B$ iff $\overrightarrow{O C}$ is linear combination of vectors $\overrightarrow{O A}, \overrightarrow{O B}$ with non negative coefficients p and such that $p+q=1$.(in that case we saying that $\overrightarrow{O C}$ is convex combination of vectors $\overrightarrow{O A}, \overrightarrow{O B}$ or that segment $A B$ is convex combination of his ends).

Indeed let C belong to the segment $A B$. If $C \in\{A, B\}$ then $\overrightarrow{A C}=$ $k \overrightarrow{A B}$, where $k \in\{0,1\}$. If $C \notin\{A, B\}$ then $\overrightarrow{A C}$ is collinear with $\overrightarrow{A B}$ and directed as $\overrightarrow{A B}$, that is $\overrightarrow{A C}=k \overrightarrow{A B}$ for some positive k. Hence, $\|\overrightarrow{A C}\|=$

$$
\|k \overrightarrow{A B}\|=k\|\overrightarrow{A B}\| \Longleftrightarrow k=\frac{\|\overrightarrow{A C}\|}{\|\overrightarrow{A B}\|}<1
$$

Thus, if C belong to the segment $A B$ then $\overrightarrow{A C}=k \overrightarrow{A B}$ with $k \in[0,1]$ and since $\overrightarrow{A C}=\overrightarrow{A O}+\overrightarrow{O C}=\overrightarrow{O C}-\overrightarrow{O A}, \overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}=\overrightarrow{O B}-\overrightarrow{O A}$ then $\overrightarrow{A C}=$ $k \overrightarrow{A B} \Longleftrightarrow \overrightarrow{O C}-\overrightarrow{O A}=k(\overrightarrow{O B}-\overrightarrow{O A}) \Longleftrightarrow \overrightarrow{O C}=k \overrightarrow{O B}-k \overrightarrow{O A}+\overrightarrow{O A} \Longleftrightarrow$
$\overrightarrow{O C}=(1-k) \overrightarrow{O A}+k \overrightarrow{O A} \Longleftrightarrow \overrightarrow{O C}=p \overrightarrow{O A}+q \overrightarrow{O A}$, where $p:=1-k, q:=$ k, that is $p, q \geq 0$ and $p+q=1$.

Opposite, let $\overrightarrow{O C}=p \overrightarrow{O A}+q \overrightarrow{O B}$, where $p+q=1$ and $p, q \geq 0$.Then, by reversing transformation above we obtain $\overrightarrow{A C}=q \overrightarrow{A B}, q \in[0,1]$. and since $\overrightarrow{C B}=\overrightarrow{C A}+\overrightarrow{A B}=\overrightarrow{A B}-\overrightarrow{A C}=\overrightarrow{A B}-q \overrightarrow{A B}=(1-q) \overrightarrow{A B}$ we obtain

Introduction to baricentric geometry with applications.
$\|\overrightarrow{A C}\|=q\|\overrightarrow{A B}\|,\|\overrightarrow{C B}\|=(1-q)\|\overrightarrow{A B}\|$. Therefore, $\|\overrightarrow{A B}\|=\|\overrightarrow{A C}\|+$ $\|\overrightarrow{C B}\| \Longleftrightarrow C$ belong to the segment $A B$.
(Another variant:
Let $\mathbf{a}:=\overrightarrow{O A}, \mathbf{b}:=\overrightarrow{O B}$ and $\mathbf{c}:=\overrightarrow{O C}$. Note that $C \in A B$ iff $\mathbf{c}-\mathbf{a}$ is collinear to $\mathbf{b}-\mathbf{a}$, that is $\mathbf{c}-\mathbf{a}=k(\mathbf{b}-\mathbf{a})$ for some real k and $|A C|+|C B|=|A B|$, that is $\|\mathbf{c}-\mathbf{a}\|+\|\mathbf{b}-\mathbf{c}\|=\|\mathbf{b}-\mathbf{a}\|$. Thus,

$$
C \in A B \Longleftrightarrow\left\{\begin{array}{c}
\mathbf{c}-\mathbf{a}=k(\mathbf{b}-\mathbf{a}) \\
\|\mathbf{c}-\mathbf{a}\|+\|\mathbf{b}-\mathbf{c}\|=\|\mathbf{b}-\mathbf{a}\|
\end{array}\right.
$$

Since

$$
\mathbf{b}-\mathbf{c}=\mathbf{b}-\mathbf{a}-(\mathbf{c}-\mathbf{a})=\mathbf{b}-\mathbf{a}-k(\mathbf{b}-\mathbf{a})=(1-k)(\mathbf{b}-\mathbf{a})
$$

then
$\|\mathbf{c}-\mathbf{a}\|+\|\mathbf{b}-\mathbf{c}\|=\|\mathbf{b}-\mathbf{a}\| \Longleftrightarrow\|k(\mathbf{b}-\mathbf{a})\|+\|(1-k)(\mathbf{b}-\mathbf{a})\|=\|\mathbf{b}-\mathbf{a}\| \Longleftrightarrow$
$|k|\|(\mathbf{b}-\mathbf{a})\|+|(1-k)|\|(\mathbf{b}-\mathbf{a})\|=\|\mathbf{b}-\mathbf{a}\| \Longleftrightarrow|k|+|(1-k)|=1 \Longleftrightarrow 0 \leq k \leq 1$.
Hence, $C \in A B \Longleftrightarrow \mathbf{c}-\mathbf{a}=k(\mathbf{b}-\mathbf{a}) \Longleftrightarrow \mathbf{c}=\mathbf{a}(1-k)+k \mathbf{b}$, where $k \in[0,1]$.

Barycentric coordinates.

Let A, B, C be vertices of non-degenerate triangle. Then, since $\overrightarrow{A B}$ and $\overrightarrow{A C}$ non-colinear, then for each point P on plain we have unique representation $\overrightarrow{A P}=k \overrightarrow{A B}+l \overrightarrow{A C}$, where $k, l \in \mathbb{R}$. Let O be a any point fixed on the plain. Then since $\overrightarrow{A P}=\overrightarrow{A O}+\overrightarrow{O P}, \overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}, \overrightarrow{A C}=\overrightarrow{A O}+\overrightarrow{O C}$ we obtain $\overrightarrow{A O}+\overrightarrow{O P}=k(\overrightarrow{A O}+\overrightarrow{O B})+l(\overrightarrow{A O}+\overrightarrow{O C}) \Longleftrightarrow \overrightarrow{O P}=(1-k-l) \overrightarrow{O A}+$ $k \overrightarrow{O B}+l \overrightarrow{O C}$. Denote $p_{a}:=1-k-l, p_{b}:=k, p_{c}:=l$, then $p_{a}+p_{b}+p_{c}=1$ and $\overrightarrow{O P}=p_{a} \overrightarrow{O A}+p_{b} \overrightarrow{O B}+p_{c} \overrightarrow{O C}$.

Suppose we have another such representation $\overrightarrow{O P}=q_{a} \overrightarrow{O A}+q_{b} \overrightarrow{O B}+q_{c} \overrightarrow{O C}$ with $q_{a}+q_{b}+q_{c}=1$, then $\overrightarrow{A P}=p_{b} \overrightarrow{A B}+p_{c} \overrightarrow{A C}=q_{b} \overrightarrow{A B}+q_{c} \overrightarrow{A C} \Longrightarrow p_{b}=q_{b}, p_{c}=$ $q_{c} \Longrightarrow p_{a}=q_{a}$.

Since for each point P we have unique ordered triple of real numbers $\left(p_{a}, p_{b}, p_{c}\right)$ which satisfy to condition $p_{a}+p_{b}+p_{c}=1$ and since any such ordered triple determine some point on plain, then will call such triples barycentric coordinates of point P with respect to triangle $\triangle A B C$, because in reality barycentric coordinates independent from origin O. Indeed let O_{1} another origin, then

$$
\begin{gathered}
\overrightarrow{O_{1} P}=\overrightarrow{O_{1} O}+\overrightarrow{O P}=\left(p_{a}+p_{b}+p_{c}\right) \overrightarrow{O_{1} O}+p_{a} \overrightarrow{O A}+p_{b} \overrightarrow{O B}+p_{c} \overrightarrow{O C}= \\
p_{a}\left(\overrightarrow{O_{1} O}+\overrightarrow{O A}\right)+p_{b}\left(\overrightarrow{O_{1} O}+\overrightarrow{O B}\right)+p_{c}\left(\overrightarrow{O_{1} O}+\overrightarrow{O C}\right)=p_{a} \overrightarrow{O_{1} A}+p_{b} \overrightarrow{O_{1} B}+\vec{O}+p_{c} \overrightarrow{O_{1} C}
\end{gathered}
$$

If $p_{a}, p_{b}, p_{c}>0$ then P is interior point of triangle and in that case we have clear geometric interpretation of numbers p_{a}, p_{b}, p_{c}. Really,since $\overrightarrow{O P}=p_{a} \overrightarrow{O A}+$ $\left(p_{b}+p_{c}\right)\left(\frac{p_{b}}{p_{b}+p_{c}} \overrightarrow{O B}+\frac{p_{c}}{p_{b}+p_{c}} \overrightarrow{O C}\right)$ then linear combination $\frac{p_{b}}{p_{b}+p_{c}} \overrightarrow{O B}+$ $\frac{p_{c}}{p_{b}+p_{c}} \overrightarrow{O C}$ determine some point A_{1} on the segment $B C$, such that

$$
\overrightarrow{O A_{1}}=\frac{p_{b}}{p_{b}+p_{c}} \overrightarrow{O B}+\frac{p_{c}}{p_{b}+p_{c}} \overrightarrow{O C} \text { and } \overrightarrow{O P}=p_{a} \overrightarrow{O A}+\left(p_{a}+p_{b}\right) \overrightarrow{O A_{1}}
$$

In particularly, $\overrightarrow{A P}=\left(p_{b}+p_{c}\right) \overrightarrow{O A_{1}}$. So, P belong to the segment $A A_{1}$ and divide it in the ratio $A P \div P A_{1}=\left(p_{b}+p_{c}\right) \div p_{a}$.

By the same way we obtain points B_{1}, C_{1} on $C A, A B$, respectively, and

$$
B P \div P B_{1}=\left(p_{c}+p_{a}\right) \div p_{b}, C P \div P C_{1}=\left(p_{a}+p_{b}\right) \div p_{c}
$$

Denote $F_{a}:=[P B C], F_{b}:=[P C A], F_{c}:=[P A B], F:=[A B C]$ then $p_{c} \div p_{a}=A B_{1} \div C B_{1}=F_{c} \div F_{a}, p_{a} \div p_{b}=B C_{1} \div A C_{1}=F_{a} \div F_{b}, p_{b} \div p_{c}=$
$B C_{1} \div A C_{1}=F_{b} \div F_{c}$. So, $p_{a} \div p_{b} \div p_{c}=F_{a} \div F_{b} \div F_{c}$ and $p_{a}=\frac{F_{a}}{F}, p_{b}=\frac{F_{b}}{F}, p_{c}=\frac{F_{c}}{F}$.

Application 1. Barycentric coordinates of some triangle centres.

Problem 1.

Find barycentric coordinates of the following Triangle centers:
a) Centroid G (the point of concurrency of the medians);
b) Incenter I (the point of concurrency of the interior angle bisectors);
c) Orthocenter H of an acute triangle (the point of concurrency of the altitudes);
d) Circumcenter O.

Solution.

a) Since for $P=G$ we have $F_{a}=F_{b}=F_{c}$ then $\left(p_{a}, p_{b}, p_{c}\right)=(1 / 3,1 / 3,1 / 3)$ is barycentric coordinates of centroid G.
b) Since for $P=I$ we have $\frac{F_{c}}{F_{b}}=\frac{B A_{1}}{A_{1} C}=\frac{c}{b}, \frac{F_{a}}{F_{b}}=\frac{B C_{1}}{C_{1} A}=\frac{a}{b}$ then $F_{a} \div F_{b} \div F_{c}=a \div b \div c$ and, therefore, $\left(p_{a}, p_{b}, p_{c}\right)=\frac{1}{a+b+c}(a, b, c)$
is barycentric coordinates of incenter I.
c) For $P=H$ we have

$$
B A_{1}=c \cos B, A_{1} C=b \cos C, B C_{1}=a \cos B, C_{1} A=b \cos A
$$

Hence, $\frac{F_{c}}{F_{b}}=\frac{B A_{1}}{A_{1} C}=\frac{c \cos B}{b \cos C}=\frac{2 R \sin C \cos B}{2 R \sin B \cos C}=\frac{\tan C}{\tan B}, \frac{F_{a}}{F_{b}}=\frac{B C_{1}}{C_{1} A}=$ $\frac{a \cos B}{b \cos A}=\frac{\tan A}{\tan B} \Longleftrightarrow F_{a} \div F_{b} \div F_{c}=\tan A \div \tan B \div \tan C$ and, since $\frac{1}{\tan A+\tan B+\tan C}(\tan A, \tan B, \tan C)=\frac{1}{\tan A \tan B \tan C}(\tan A, \tan B, \tan C)=$ $(\cot B \cot C, \cot C \cot A, \cot A \cot B)$, then

$$
\left(p_{a}, p_{b}, p_{c}\right)=(\cot B \cot C, \cot C \cot A, \cot A \cot B)
$$

is barycentric coordinates of orthocenter H.
d) For $P=O$ since $\angle B O C=2 A, \angle C O A=2 B, \angle A O B=2 C$ we have $F_{a}=\frac{R^{2} \sin 2 A}{2}, F_{b}=\frac{R^{2} \sin 2 B}{2}, F_{c}=\frac{R^{2} \sin 2 C}{2}$ and, therefore*, $\left(p_{a}, p_{b}, p_{c}\right)=$ $\frac{1}{\sin 2 A+\sin 2 B+\sin 2 C}(\sin 2 A, \sin 2 B, \sin 2 C)=\frac{1}{4 \sin A \sin B \sin C}(\sin 2 A, \sin 2 B, \sin 2 C)=$

$$
\left(\frac{\cos A}{\sin B \sin C}, \frac{\cos B}{\sin C \sin A}, \frac{\cos C}{\sin A \sin B}\right)
$$

is barycentric coordinates of circumcenter O.

* Note that $\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C$.

Problem 2.

a) Let A_{1}, B_{1}, C_{1} be, respectively, points of tangency of incircle to sides $B C, C A, A B$ of a triangle $A B C$. Prove that cevians $A A_{1}, B B_{1}, C C_{1}$ are intersect at one point and find barycentric coordinates of this point.
b) The same questions if A_{1}, B_{1}, C_{1} be, respectively, points where excircles tangent sides $B C, C A, A B$.

Solution.

a)

Since $A C_{1}=B_{1} A=s-a, C_{1} B=B A_{1}=s-b, A_{1} C=C B_{1}=s-$ c then $\frac{B A_{1}}{A_{1} C} \cdot \frac{C B_{1}}{B_{1} A} \cdot \frac{A C_{1}}{C_{1} B}=\frac{s-b}{s-c} \cdot \frac{s-c}{s-a} \cdot \frac{s-a}{s-b}=1$ and, therefore, by converse of Ceva's Theorem cevians $A A_{1}, B B_{1}, C C_{1}$ are concurrent. Let T be point of intersection of these cevians. For $P=T$ we have $\frac{F_{c}}{F_{b}}=\frac{B A_{1}}{A_{1} C}=\frac{s-b}{s-c}=\frac{1 /(s-c)}{1 /(s-b)}=$ $\frac{(s-b)(s-a)}{(s-c)(s-a)}, \frac{F_{a}}{F_{b}}=\frac{C_{1} B}{A C_{1}}=\frac{s-b}{s-a}=\frac{1 /(s-a)}{1 /(s-b)}=\frac{(s-b)(s-c)}{(s-c)(s-a)}$.

Hence, $F_{a} \div F_{b} \div F_{c}=(s-b)(s-c) \div(s-c)(s-a) \div(s-a)(s-b)=$ $\frac{1}{s-a} \div \frac{1}{s-b} \div \frac{1}{s-c}$. Let r_{a}, r_{b}, r_{c} be exradii of $\triangle A B C$. Since $r_{a}(s-a)=$ $r_{b}(s-b)=r_{c}(s-c)=F$ and $r_{a}+r_{b}+r_{c}=4 R+r$ then $F_{a} \div F_{b} \div F_{c}=$ $r_{a} \div r_{b} \div r_{c}$ and, therefore,

$$
\left(p_{a}, p_{b}, p_{c}\right)=\frac{1}{4 R+r}\left(r_{a}, r_{b}, r_{c}\right)
$$

b)

Let $x:=B A_{1}, y:=C A_{1}$. Then $x+y=a, A K=A L \Longleftrightarrow c+x=b+y$ and, therefore, $2 x=x+y+x-y=a+b-c \Longleftrightarrow x=s-c, y=s-b$ and $A K=A L=s$. Thus $B A_{1}=B K=s-c, A_{1} C=C L=s-b$.Similarly, $B_{1} A=$ $s-c, A C_{1}=s-b$ and $B C_{1}=C B_{1}=s-a$. Then $\frac{B A_{1}}{A_{1} C} \cdot \frac{C B_{1}}{B_{1} A} \cdot \frac{A C_{1}}{C_{1} B}=$ $\frac{s-c}{s-b} \cdot \frac{s-a}{s-c} \cdot \frac{s-b}{s-a}=1$ and, therefore, by converse of Ceva's Theorem cevians $A A_{1}, B B_{1}, C C_{1}$ are concurrent. Let E be point of intersection of these cevians. For $P=E$ we have $\frac{F_{c}}{F_{b}}=\frac{B A_{1}}{A_{1} C}=\frac{s-c}{s-b}, \frac{F_{a}}{F_{b}}=\frac{C_{1} B}{A C_{1}}=\frac{s-a}{s-b}$.

Hence, $F_{a} \div F_{b} \div F_{c}=(s-a) \div(s-b) \div(s-c)$ and, therefore, $\left(p_{a}, p_{b}, p_{c}\right)=$ $\frac{1}{s}(s-a, s-b, s-c)$.

Problem 3.

Find barycentric coordinates of Lemoine point (point of intersection of symmedians). (A-symmedian of triangle $A B C$ is the reflection of the A-median in the A-internal angle bisector).

pic. 1
Let $A M, A L, A K$ be respectively median, angle-bisector and symmedian of $\triangle A B C$ and let $a:=B C, b:=C A, c:=A B, m_{a}:=A M, w_{a}:=A L, k_{a}:=$ $A K, p:=M L, q:=K L$. Suppose also, that $b \geq c$. Since $A L$ is symmedian in $\triangle A B C$ then $A L$ is angle-bisector in triangle $M A K$ and that imply $\frac{m_{a}}{p}=$ $\frac{k_{a}}{q}$,i.e. there is $t>0$ such that $k_{a}=t m_{a}$ and $q=t p$.Applying Stewart's Formula to chevian $A L$ in triangle $M A K$ we obtain: $w_{a}^{2}=m_{a}^{2} \cdot \frac{q}{p+q}+k_{a}^{2} \cdot \frac{p}{p+q}-(p+$ $q)^{2} \cdot \frac{p q}{(p+q)^{2}}=m_{a}^{2} \cdot \frac{q}{p+q}+k_{a}^{2} \cdot \frac{p}{p+q}-p q=\frac{t m_{a}^{2}}{1+t}+\frac{k_{a}^{2}}{1+t}-t p^{2}$, because $\frac{p}{p+q}=$ $\frac{1}{1+t}, \frac{q}{p+q}=\frac{t}{1+t}$. Since $A L$ angle-bisector in $\triangle A B C$ then $C L=\frac{a b}{b+c}$ and $p=\frac{a b}{b+c}-\frac{a}{2}=\frac{a(b-c)}{2(b+c)}$. By substitution $w_{a}^{2}=\frac{b c\left((b+c)^{2}-a^{2}\right)}{(b+c)^{2}}, m_{a}^{2}=$ $\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4}, p=\frac{a(b-c)}{2(b+c)}$ and $k_{a}=t m_{a}$ in $w_{a}^{2}=\frac{t m_{a}^{2}}{1+t}+\frac{k_{a}^{2}}{1+t}-t p^{2}$ we obtain:

$$
\begin{gathered}
\frac{t m_{a}^{2}}{1+t}+\frac{k_{a}^{2}}{1+t}-t p^{2}=\frac{t m_{a}^{2}}{1+t}+\frac{t^{2} m_{a}^{2}}{1+t}-t p^{2}=t\left(m_{a}^{2}-p^{2}\right)= \\
t\left(\frac{b^{2}+c^{2}}{2}-\frac{a^{2}}{4}\left(1+\frac{(b-c)^{2}}{(b+c)^{2}}\right)\right)=t\left(\frac{b^{2}+c^{2}}{2}-\frac{a^{2}\left(b^{2}+c^{2}\right)}{2(b+c)^{2}}\right)= \\
\frac{t\left((b+c)^{2}-a^{2}\right)\left(b^{2}+c^{2}\right)}{2(b+c)^{2}}=\frac{b c\left((b+c)^{2}-a^{2}\right)}{(b+c)^{2}}
\end{gathered}
$$

Hence, $t=\frac{2 b c}{b^{2}+c^{2}}, k_{a}=\frac{2 b c m_{a}}{b^{2}+c^{2}}=\frac{b c \sqrt{2\left(b^{2}+c^{2}\right)-a^{2}}}{b^{2}+c^{2}}, p+q=\frac{a(b-c)}{2(b+c)}(1+t)=$ $\frac{a(b-c)}{2(b+c)} \cdot \frac{(b+c)^{2}}{b^{2}+c^{2}}=\frac{a\left(b^{2}-c^{2}\right)}{2\left(b^{2}+c^{2}\right)}$ and $\frac{C K}{K B}=\frac{\frac{a}{2}+p+q}{\frac{a}{2}-(p+q)}=\frac{b^{2}}{c^{2}}$.

So, if L is Lemoin's Point (point of intersection of symmedians of $\triangle A B C$) then for barycentric coordinates $\left(L_{a}, L_{b}, L_{c}\right)$ of L holds $L_{a} \div L_{b} \div L_{c}=a^{2} \div b^{2} \div c^{2}$.

Distances Formulas.

1. Stewart's Formula for length of chevian.

Let $\overrightarrow{O P}=p_{a} \overrightarrow{O A}+p_{b} \overrightarrow{O B}, p_{a}+p_{b}=1$, then $O P^{2}=\overrightarrow{O P} \cdot \overrightarrow{O P}=$

$$
\begin{gathered}
\left(p_{a} \overrightarrow{O A}+p_{b} \overrightarrow{O B}\right) \cdot\left(p_{a} \overrightarrow{O A}+p_{b} \overrightarrow{O B}\right)=p_{a}^{2} O A^{2}+p_{b}^{2} O B^{2}+2 p_{a} p_{b}(\overrightarrow{O A} \cdot \overrightarrow{O B})= \\
p_{a}\left(1-p_{b}\right) O A^{2}+p_{b}\left(1-p_{a}\right) O B^{2}+2 p_{a} p_{b}(\overrightarrow{O A} \cdot \overrightarrow{O B})=
\end{gathered}
$$

$$
p_{a} O A^{2}+p_{b} O B^{2}-p_{a} p_{b} O A^{2}-p_{a} p_{b} O B^{2}+2 p_{a} p_{b}(\overrightarrow{O A} \cdot \overrightarrow{O B})=p_{a} O A^{2}+p_{b} O B^{2}-p_{a} p_{b} A B^{2}
$$

So, $O P^{2}=p_{a} O A^{2}+p_{b} O B^{2}-p_{a} p_{b} A B^{2}$.(Stewart's Formula).

2. Lagrange's Formula.

Let $\left(p_{a}, p_{b}, p_{c}\right)$ be baycentric coordinates of the point P, i.e. $p_{a}+p_{b}+p_{c}=$ 1 and $\overrightarrow{O P}=p_{a} \overrightarrow{O A}+p_{b} \overrightarrow{O B}+p_{c} \overrightarrow{O C}$, then $O P^{2}=\overrightarrow{O P} \cdot \overrightarrow{O P}=\left(p_{a} \overrightarrow{O A}+p_{b} \overrightarrow{O B}+p_{c} \overrightarrow{O C}\right)$. $\overrightarrow{O P}=p_{a} \overrightarrow{O A} \cdot \overrightarrow{O P}+p_{b} \overrightarrow{O B} \cdot \overrightarrow{O P}+p_{c} \overrightarrow{O C} \cdot \overrightarrow{O P}=$

$$
p_{a} \overrightarrow{O A} \cdot(\overrightarrow{O A}+\overrightarrow{A P})+p_{b} \overrightarrow{O B} \cdot(\overrightarrow{O B}+\overrightarrow{B P})+p_{c} \overrightarrow{O C} \cdot(\overrightarrow{O C}+\overrightarrow{C P})=
$$

$$
\sum_{c y c}\left(p_{a} O A^{2}+p_{a} \overrightarrow{O A} \cdot \overrightarrow{A P}\right)=\sum_{c y c} p_{a} O A^{2}+\sum_{c y c} p_{a}(\overrightarrow{O P}+\overrightarrow{P A}) \cdot \overrightarrow{A P}=
$$

$$
\sum_{c y c} p_{a} O A^{2}+\sum_{c y c} p_{a}(\overrightarrow{O P}-\overrightarrow{A P}) \cdot \overrightarrow{A P}=\sum_{c y c} p_{a}\left(O A^{2}-P A^{2}\right)+\sum_{c y c} p_{a} \overrightarrow{O P} \cdot \overrightarrow{A P}=
$$

$$
\sum_{c y c} p_{a}\left(O A^{2}-P A^{2}\right)+\overrightarrow{O P} \cdot \sum_{c y c} p_{a} \overrightarrow{A P}=\sum_{c y c} p_{a}\left(O A^{2}-P A^{2}\right)
$$

So, $O P^{2}=\sum_{c y c} p_{a}\left(O A^{2}-P A^{2}\right)$ (Lagrange's formula).

Remark.

As a corollary from Lagrange's formula we obtain two identities which can be useful.

Introduction to baricentric geometry with applications.

Let P and be two points on plane with barycentric coordinates $\left(p_{a}, p_{b}, p_{c}\right)$ and $Q\left(q_{a}, q_{b}, q_{c}\right)$, respectively. Since $Q P^{2}=\sum_{c y c} p_{a}\left(Q A^{2}-P A^{2}\right)$ and $P Q^{2}=\sum_{c y c} q_{a}\left(P A^{2}-Q A^{2}\right)$ we obtain

$$
P Q^{2}=\frac{1}{2} \sum_{c y c}\left(p_{a}-q_{a}\right)\left(Q A^{2}-P A^{2}\right) \text { and } \sum_{c y c}\left(p_{a}+q_{a}\right)\left(P A^{2}-Q A^{2}\right)=0
$$

3. Leibnitz Formula

Let A_{1}, B_{1}, C_{1} be points intersection of lines $P A, P B, P C$ with $B C, C A, A B$ respectively. Applying Stewart Formula to $O=A_{1}, P$ and B, C and taking in account that $B A_{1} \div C A_{1}=p_{c} \div p_{b}$ we obtain

$$
A_{1} P^{2}=\frac{p_{b}}{p_{b}+p_{c}} P B^{2}+\frac{p_{c}}{p_{b}+p_{c}} P C^{2}-\frac{p_{b}}{p_{b}+p_{c}} \cdot \frac{p_{c}}{p_{b}+p_{c}} a^{2}
$$

and, and since $\overrightarrow{A_{1} P}=-\frac{p_{a}}{p_{b}+p_{c}} \overrightarrow{A P}$ then $A_{1} P^{2}=\frac{p_{a}^{2}}{\left(p_{b}+p_{c}\right)^{2}} A P^{2}$.
Therefore, $\frac{p_{a}^{2}}{\left(p_{b}+p_{c}\right)^{2}} A P^{2}=\frac{p_{b}}{p_{b}+p_{c}} P B^{2}+\frac{p_{c}}{p_{b}+p_{c}} P C^{2}-\frac{p_{b}}{p_{b}+p_{c}} \cdot \frac{p_{c}}{p_{b}+p_{c}} a^{2} \Longleftrightarrow$ $p_{a}^{2} A P^{2}=p_{b}\left(p_{b}+p_{c}\right) P B^{2}+p_{c}\left(p_{b}+p_{c}\right) P C^{2}-p_{b} p_{c} a^{2}$.Hence, $\sum_{c y c} p_{a}^{2} A P^{2}=\sum_{c y c} p_{b}\left(p_{b}+p_{c}\right) P B^{2}+$ $\sum_{c y c} p_{c}\left(p_{b}+p_{c}\right) P C^{2}-\sum_{c y c} p_{b} p_{c} a^{2} \Longleftrightarrow$

$$
\sum_{c y c} p_{b} p_{c} a^{2}=\sum_{c y c}\left(p_{b}^{2}+p_{b} p_{c}\right) P B^{2}+\sum_{c y c}\left(p_{b} p_{c}+p_{c}^{2}\right) P C^{2}-\sum_{c y c} p_{a}^{2} A P^{2}=
$$

$$
\sum_{c y c} p_{b}^{2} P B^{2}+\sum_{c y c} p_{b} p_{c} P B^{2}+\sum_{c y c} p_{b} p_{c} P C^{2}+\sum_{c y c} p_{c}^{2} P C^{2}-\sum_{c y c} p_{a}^{2} A P^{2}=
$$

$$
\sum_{c y c} p_{b} p_{c} P B^{2}+\sum_{c y c} p_{b} p_{c} P C^{2}+\sum_{c y c} p_{c}^{2} P C^{2}=\sum_{c y c} p_{b} p_{c} P B^{2}+\sum_{c y c} p_{c} p_{a} P A^{2}+\sum_{c y c} p_{c}^{2} P C^{2}=
$$

$$
\sum_{c y c} p_{c}\left(p_{b} P B^{2}+p_{a} P A^{2}+p_{c} P C^{2}\right)=\left(p_{b} P B^{2}+p_{a} P A^{2}+p_{c} P C^{2}\right) \sum_{c y c} p_{c}=\sum_{c y c} p_{a} P A^{2}
$$

Thus, $\sum_{c y c} p_{a} P A^{2}=\sum_{c y c} p_{b} p_{c} a^{2}$ and, therefore, $O P^{2}=\sum_{c y c} p_{a}\left(O A^{2}-P A^{2}\right) \Longleftrightarrow$

$$
O P^{2}=\sum_{c y c} p_{a} O A^{2}-\sum_{c y c} p_{b} p_{c} a^{2}(\text { Leibnitz Formula })
$$

Introduction to baricentric geometry with applications.

Application of distance formulas.

1. Distance between circumcenter O and centroid G.

Let O be circumcenter, R-circumradius and $P=G\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, then $O G^{2}=$ $\sum_{\text {cyclic }} \frac{1}{3} \cdot\left(R^{2}-G A^{2}\right)=R^{2}-\frac{1}{3} \sum_{\text {cyclic }} G A^{2}$.

Since $G A^{2}=\frac{4}{9}\left(\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4}\right)=\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{9}$ then $\sum_{\text {cyclic }} G A^{2}=$ $\frac{a^{2}+b^{2}+c^{2}}{3}$ and $O G^{2}=R^{2}-\frac{a^{2}+b^{2}+c^{2}}{9}$.

This imply $R^{2}-\frac{a^{2}+b^{2}+c^{2}}{9} \geq 0 \Longleftrightarrow a^{2}+b^{2}+c^{2} \leq 9 R^{2}$.

2. Distance between circumcenter O and incenter I.

(Euler's formula and Euler's inequality).
Let O be circumcenter. Since $I\left(\frac{a}{a+b+c}, \frac{b}{a+b+c}, \frac{c}{a+b+c}\right)$, then $(a+b+c) O I^{2}=\sum_{c y c} a\left(O A^{2}-I A^{2}\right)=\sum_{c y c} a\left(R^{2}-I A^{2}\right)=(a+b+c) R^{2}-$ $\sum_{c y c} a I A^{2}$.

Since $a I A^{2}=\frac{a w_{a}^{2}(b+c)^{2}}{(a+b+c)^{2}}=\frac{a b c(a+b+c)(b+c-a)(b+c)^{2}}{(a+b+c)^{2}(b+c)^{2}}=\frac{a b c(b+c-a)}{a+b+c}$ then $\sum_{\text {cyclic }} a I A^{2}=a b c$ and $O I^{2}=R^{2}-\frac{a b c}{a+b+c}=R^{2}-\frac{4 R r s}{2 s}=R^{2}-2 R r$.

Hence, $O I=\sqrt{R^{2}-2 R r}$ and $R^{2}-2 R r \geq 0 \Longleftrightarrow R \geq 2 r$.

Remark.

Consider now general situation, when O be circumcenter, R-circumradius of circumcircle of $\triangle A B C$ and (p_{a}, p_{b}, p_{c}) is barycentric coordinates of some point P.Then applying general Leibnitz Formula for such origin O we obtain:
$O P^{2}=\sum_{c y c} p_{a} O A^{2}-\sum_{c y c} p_{b} p_{c} a^{2}=\sum_{c y c} p_{a} R^{2}-\sum_{c y c} p_{b} p_{c} a^{2}=$ $R^{2}-\sum_{c y c} p_{b} p_{c} a^{2}$.

Thus $\sum_{c y c} p_{b} p_{c} a^{2} \leq R^{2}$ and $O P=\sqrt{R^{2}-\sum_{c y c} p_{b} p_{c} a^{2}}$.
Using the formula obtained for the $O P$, we consider several more cases of calculating the distances between circumcenter O and another triangle centers..

But for beginning we will apply this formula for considered above two cases.
If $P=G\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ then $\sum_{c y c} p_{b} p_{c} a^{2}=\frac{1}{9} \sum_{c y c} a^{2}$ and, therefore,

$$
O G=\sqrt{R^{2}-\frac{a^{2}+b^{2}+c^{2}}{9}}
$$

Introduction to baricentric geometry with applications.
;
If $P=I\left(\frac{a}{2 s}, \frac{b}{2 s}, \frac{c}{2 s}\right)$ then $\sum_{c y c} p_{b} p_{c} a^{2}=\frac{1}{4 s^{2}} \sum_{c y c} b c a^{2}=\frac{a b c(a+b+c)}{4 s^{2}}=$ $\frac{4 R r s \cdot 2 s}{4 s^{2}}=2 R r$ and, therefore,

$$
O I=\sqrt{R^{2}-2 R r}
$$

3. Distance between circumcenter O and orthocenter H.

Since $H(\cot B \cot C, \cot C \cot A, \cot A \cot B)$ then $\sum_{c y c} p_{b} p_{c} a^{2}=\sum_{c y c} \cot C \cot A$. $\cot A \cot B \cdot a^{2}=\cot A \cot B \cot C \sum_{c y c} a^{2} \cot A$. Noting that $\sum_{c y c} \cot A \cdot a^{2}=4 R^{2} \sum_{c y c} \cot A$. $\sin ^{2} A=2 R^{2} \sum_{\text {cyc }} \sin 2 A=8 R^{2} \sin A \sin B \sin C$ and $\cos A \cos B \cos C=\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}$ we obtain $\sum_{c y c} p_{b} p_{c} a^{2}=\cot A \cot B \cot C \sum_{c y c} a^{2} \cot A=\cot A \cot B \cot C \cdot 8 R^{2} \sin A \sin B \sin C=$ $8 R^{2} \cos A \cos B \cos C=8 R^{2} \cdot \frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}=2\left(s^{2}-(2 R+r)^{2}\right)$ and, therefore,

$$
O H=\sqrt{R^{2}-2\left(s^{2}-(2 R+r)^{2}\right)}=\sqrt{9 R^{2}+8 R r+2 r^{2}-2 s^{2}}
$$

And by the way we obtain inequality $s^{2} \leq \frac{9 R^{2}+8 R r+2 r^{2}}{2}$.

Remark.

This inequality also immediately follows from Gerretsen's Inequality $s^{2} \leq$ $4 R^{2}+4 R r+3 r^{2}$ and Euler's Inequality $R \geq 2 r$. Indeed, $9 R^{2}+8 R r+2 r^{2}-2 s^{2} \geq$ $\left.9 R^{2}+8 R r+2 r^{2}-2\left(4 R^{2}+4 R r+3 r^{2}\right)=(R-2 r)(R+2 r)\right)$.
4. Distance between circumcenter O and point T.(see Problem 2a. in Application1)

Since for $P=T$ we have $\left(p_{a}, p_{b}, p_{c}\right)=\left(\frac{1}{k(s-a)}, \frac{1}{k(s-b)}, \frac{1}{k(s-c)}\right)$,
where $k=\sum_{c y c} \frac{1}{s-a}=\frac{4 R+r}{s r}$ then $^{*} \sum_{c y c} p_{b} p_{c} a^{2}=\frac{1}{k^{2}} \sum_{c y c} \frac{a^{2}}{(s-b)(s-c)}=$
$\frac{s^{2} r^{2}}{(4 R+r)^{2}(s-a)(s-b)(s-c)} \sum_{c y c} a^{2}(s-a)=\frac{s^{2} r^{2}}{(4 R+r)^{2} s r^{2}} \sum_{c y c} a^{2}(s-a)=\frac{s}{(4 R+r)^{2}} \sum_{c y c} a^{2}(s-a)=$ $\frac{4 s^{2} r(R+r)}{(4 R+r)^{2}}$ and, therefore,

$$
O T=\sqrt{R^{2}-\frac{4 s^{2} r(R+r)}{(4 R+r)^{2}}}
$$

And by the way we obtain inequality $s^{2} \leq \frac{R^{2}(4 R+r)^{2}}{4 r((R+r))}$, which also can be

Introduction to baricentric geometry with applications.
proved using Gerretsen's Inequality $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ and Euler's Inequality $R \geq 2 r$.

* Since $a b+b c+c a=s^{2}+4 R r+r^{2}, a^{2}+b^{2}+c^{2}=4 s^{2}-2(a b+b c+c a)=$ $2\left(s^{2}-4 R r-r^{2}\right), a^{3}+b^{3}+c^{3}=3 a b c+(a+b+c)^{3}-3(a+b+c)(a b+b c+c a)=$ $3 \cdot 4 R r s+8 s^{3}-6 s\left(s^{2}+4 R r+r^{2}\right)=2 s\left(s^{2}-6 R r-3 r^{2}\right)$ we obtain

$$
\sum_{c y c} a^{2}(s-a)=2 s\left(s^{2}-4 R r-r^{2}\right)-2 s\left(s^{2}-6 R r-3 r^{2}\right)=4 r s(R+r)
$$

5. Distance between circumcenter O and point E (see Problem 2b. in Application1)

Since for $P=E$ we have $\left(p_{a}, p_{b}, p_{c}\right)=\frac{1}{s}(s-a, s-b, s-c)$ then $\sum_{c y c} p_{b} p_{c} a^{2}=$ $\frac{1}{s^{2}} \sum_{c y c}(s-b)(s-c) a^{2}=\frac{1}{s^{2}} \sum_{c y c}\left(a^{2} s^{2}-a^{2} s(b+c)+a^{2} b c\right)=a^{2}+b^{2}+c^{2}+$ $\frac{a b c(a+b+c)}{s^{2}}-\frac{(a+b+c)(a b+b c+c a)}{s}+\frac{3 a b c}{s}=2\left(s^{2}-4 R r-r^{2}\right)+8 R r-$ $2\left(s^{2}+4 R r+r^{2}\right)+12 R r=4 r(R-r)$ and,therefore, $O E=\sqrt{R^{2}-4 r(R-r)}=$ $R-2 r$ and, by the way, our calculation of $Q E$ give us one more proof of Euler's Inequality.

6. Distance between circumcenter O and point L (Lemioin's point).

Since for $P=L$ we have $\left(p_{a}, p_{b}, p_{c}\right)=\frac{1}{a^{2}+b^{2}+c^{2}}\left(a^{2}, b^{2}, c^{2}\right)$ then $\sum_{c y c} p_{b} p_{c} a^{2}=$
$\frac{1}{\left(a^{2}+b^{2}+c^{2}\right)^{2}} \sum_{c y c} b^{2} c^{2} \cdot a^{2}=\frac{3 a^{2} b^{2} c^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}$ and, therefore, $O L=\sqrt{R^{2}-\frac{3 a^{2} b^{2} c^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}}=$
$\sqrt{R^{2}-\frac{48 R^{2} r^{2} s^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}}=R \sqrt{1-\frac{48 F^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}}$ and, by the way, our calcu-
lation of $Q L$ give us one more proof of Weitzenböck's inequality $a^{2}+b^{2}+c^{2} \geq$ $4 \sqrt{3} F$.

Remark.
Since $\left(a^{2}+b^{2}+c^{2}\right)^{2}-48 F^{2}=\left(a^{2}+b^{2}+c^{2}\right)^{2}-3\left(2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}-a^{4}-b^{4}-c^{4}\right)=$ $4\left(a^{4}+b^{4}+c^{4}-a^{2} b^{2}-a^{2} c^{2}-b^{2} c^{2}\right)$ then

$$
O L=2 R \sqrt{\frac{a^{4}+b^{4}+c^{4}-a^{2} b^{2}-a^{2} c^{2}-b^{2} c^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}}
$$

Problem 4.
Let $A B C$ be a triangle with sidelengths a, b, c and let M be any point lying on circumcircle
of $\triangle A B C$.Find the maximum and minimum of the the following expression:
a) $a \cdot M A^{2}+b \cdot M B^{2}+c \cdot M C^{2}$ (All Israel Math Olympiad);.
\star b) $\tan A \cdot M A^{2}+\tan B \cdot M B^{2}+\tan C \cdot M C^{2}$ if $\triangle A B C$ is acute angled triangle;

$$
\begin{array}{ll}
\star \mathbf{c}) & \sin 2 A \cdot M A^{2}+\sin 2 B \cdot M B^{2}+\sin 2 C \cdot M C^{2} ; \\
\star \mathbf{d}) & a^{2} \cdot M A^{2}+b^{2} \cdot M B^{2}+c^{2} \cdot M C^{2} ; \\
\mathbf{\star e}) & \frac{M A^{2}}{s-a}+\frac{M B^{2}}{s-b}+\frac{M C^{2}}{s-c} . \\
\mathbf{\star f}) & (s-a) M A^{2}+(s-b) M B^{2}+(s-c) M C^{2}
\end{array}
$$

Solution.

First we consider a common approach to the all these problems represented in the following general formulation:

Let α, β, γ be real numbers such that $\alpha+\beta+\gamma \neq 0$ and let M be any point lying on circumcircle of a triangle $A B C$ with sidelengths a, b, c and circumradius R

Find the maximal and the minimal values of the expression:

$$
D(M):=\alpha \cdot M A^{2}+\beta \cdot M B^{2}+\gamma \cdot M C^{2}
$$

Let P be a point on the plane with barycentric coordinates $\left(p_{a}, p_{b}, p_{c}\right)=$ $\frac{1}{\alpha+\beta+\gamma}(\alpha, \beta, \gamma)$.Then, by replacing origin O in the Leibnitz Formula with M, we obtain
$M P^{2}=\sum_{c y c} p_{a} M A^{2}-\sum_{c y c} p_{b} p_{c} a^{2}=\frac{1}{\alpha+\beta+\gamma} \sum_{c y c} \alpha \cdot M A^{2}-\frac{1}{(\alpha+\beta+\gamma)^{2}} \sum_{c y c} \beta \gamma a^{2} \Longleftrightarrow$
$D(M)=(\alpha+\beta+\gamma) M P^{2}+\frac{1}{\alpha+\beta+\gamma} \sum_{c y c} \beta \gamma a^{2}=(\alpha+\beta+\gamma)\left(M P^{2}+\sum_{c y c} p_{b} p_{c} a^{2}\right)$.
Since $\sum_{c y c} p_{b} p_{c} a^{2}$ isn't depend from M then the problem reduces to finding the largest and smallest value of $(\alpha+\beta+\gamma) M P^{2}$. Wherein if $\alpha+\beta+\gamma<0$ then $\max \left((\alpha+\beta+\gamma) M P^{2}\right)=(\alpha+\beta+\gamma) \min M P^{2}$ and
$\min \left((\alpha+\beta+\gamma) M P^{2}\right)=(\alpha+\beta+\gamma) \max M P^{2}$.
Bearing in mind the application of the general case to the problems listed above, and also not to overload the text, we assume further that $\alpha+\beta+\gamma>0$ and that point P is interior with respect to circumcircle. Hence,

Then if d is the distant between point P and circumcenter O then $\max M P=$ $R+d$ and $\min M P=R-d$.

$$
\max D(M)=(\alpha+\beta+\gamma)\left((R+d)^{2}+\sum_{c y c} p_{b} p_{c} a^{2}\right)
$$

and

$$
\min D(M)=(\alpha+\beta+\gamma)\left((R-d)^{2}+\sum_{c y c} p_{b} p_{c} a^{2}\right)
$$

Coming back to the listed above subproblems we obtain:
a) Since $(\alpha, \beta, \gamma)=(a, b, c), P=I,\left(p_{a}, p_{b}, p_{c}\right)=\left(\frac{a}{2 s}, \frac{b}{2 s}, \frac{c}{2 c}\right), d=O I=$ $\sqrt{R^{2}-2 R r}$ and $\sum_{c y c} p_{b} p_{c} a^{2}=2 R r$ (see Distance between circumcenter O and incenter I) then for $D(M)=a \cdot M A^{2}+b \cdot M B^{2}+c \cdot M C^{2}$ we obtain $\max D(M)=(a+b+c)\left(\left(R+\sqrt{R^{2}-2 R r}\right)^{2}+2 R r\right)=4 R s\left(R+\sqrt{R^{2}-2 R r}\right)$ and $\min D(M)=(a+b+c)\left(\left(R-\sqrt{R^{2}-2 R r}\right)^{2}+2 R r\right)=4 R s\left(R-\sqrt{R^{2}-2 R r}\right)$.
b) Since
$(\alpha, \beta, \gamma)=(\tan A, \tan B, \tan C),\left(p_{a}, p_{b}, p_{c}\right)=(\cot B \cot C, \cot C \cot A, \cot A \cot B)$,
$d=O H=\sqrt{9 R^{2}+8 R r+2 r^{2}-2 s^{2}}, \quad \tan A+\tan B+\tan C=\frac{2 s r}{s^{2}-(2 R+r)^{2}}$
and $\sum_{c y c} p_{b} p_{c} a^{2}=2\left(s^{2}-(2 R+r)^{2}\right)$ (see Distance between circumcenter O and orthocenter H) then for

$$
D(M)=\tan A \cdot M A^{2}+\tan B \cdot M B^{2}+\tan C \cdot M C^{2}
$$

we we obtain
$\max D(M)=(\tan A+\tan B+\tan C)\left(\left(R+\sqrt{9 R^{2}+8 R r+2 r^{2}-2 s^{2}}\right)^{2}+2\left(s^{2}-(2 R+r)^{2}\right)\right)=$
$\frac{2 s r}{s^{2}-(2 R+r)^{2}} \cdot 2 R\left(R+\sqrt{9 R^{2}+8 R r+2 r^{2}-2 s^{2}}\right)=\frac{4 R r s\left(R+\sqrt{9 R^{2}+8 R r+2 r^{2}-2 s^{2}}\right)}{s^{2}-(2 R+r)^{2}}$
and

$$
\min D(M)=\frac{4 R r s\left(R-\sqrt{9 R^{2}+8 R r+2 r^{2}-2 s^{2}}\right)}{s^{2}-(2 R+r)^{2}}
$$

c) Since

$$
\begin{aligned}
(\alpha, \beta, \gamma) & =(\sin 2 A, \sin 2 B, \sin 2 C), P=O \\
\left(p_{a}, p_{b}, p_{c}\right) & =\left(\frac{\cos A}{\sin B \sin C}, \frac{\cos B}{\sin C \sin A}, \frac{\cos C}{\sin A \sin B}\right)
\end{aligned}
$$

and and $d=O O=0$ then
$D(M)=\sin 2 A \cdot M A^{2}+\sin 2 B \cdot M B^{2}+\sin 2 C \cdot M C^{2}=(\sin 2 A+\sin 2 B+\sin 2 C) \sum_{c y c} \frac{\cos B}{\sin C \sin A} \cdot \frac{\cos C}{\sin A \sin B} a^{2}=$
$4 \sin A \sin B \sin C \sum_{c y c} \frac{a^{2} \cos B \cos C}{\sin ^{2} A \sin C \sin B}=4 \sum_{c y c} \frac{a^{2} \cos B \cos C}{\sin A}=8 R^{2} \sum_{c y c} \sin A \cos B \cos C$.

That is for any point M that lies on circumcircle $D(M)$ is the constant, namely

$$
\sum_{c y c} \sin 2 A \cdot M A^{2}=8 R^{2} \sum_{c y c} \sin A \cos B \cos C
$$

d) Since

$$
\begin{gathered}
(\alpha, \beta, \gamma)=\left(a^{2}, b^{2}, c^{2}\right), P=L, \quad\left(p_{a}, p_{b}, p_{c}\right)=\frac{1}{a^{2}+b^{2}+c^{2}}\left(a^{2}, b^{2}, c^{2}\right) \\
d=O L=R \sqrt{1-\frac{48 F^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}}, \sum_{c y c} p_{b} p_{c} a^{2}=\frac{3 a^{2} b^{2} c^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}=\frac{48 R^{2} F^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}
\end{gathered}
$$

(see Distance between circumcenter O and Lemoin point L) then for

$$
D(M)=a^{2} \cdot M A^{2}+b^{2} \cdot M B^{2}+c^{2} \cdot M C^{2}
$$

we obtain

$$
\begin{gathered}
\max D(M)=\left(a^{2}+b^{2}+c^{2}\right)\left(R^{2}\left(1+\sqrt{1-\frac{48 F^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}}\right)^{2}+\frac{48 R^{2} F^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}\right)= \\
\frac{R^{2}}{a^{2}+b^{2}+c^{2}}\left(\left(a^{2}+b^{2}+c^{2}+\sqrt{\left(a^{2}+b^{2}+c^{2}\right)^{2}-48 F^{2}}\right)^{2}+48 F^{2}\right)= \\
2 R^{2}\left(2 \sqrt{a^{4}+b^{4}+c^{4}-a^{2} b^{2}-a^{2} c^{2}-b^{2} c^{2}}+a^{2}+b^{2}+c^{2}\right)
\end{gathered}
$$

because $\left(a^{2}+b^{2}+c^{2}\right)^{2}-48 F^{2}=4\left(a^{4}+b^{4}+c^{4}-a^{2} b^{2}-a^{2} c^{2}-b^{2} c^{2}\right)$ and $\left(t+\sqrt{t^{2}-48 F^{2}}\right)^{2}+48 F^{2}=2 t\left(\sqrt{t^{2}-48 F^{2}}+t\right)$, where $t=a^{2}+b^{2}+c^{2}$.

Also,

$$
\begin{gathered}
\min D(M)=\left(a^{2}+b^{2}+c^{2}\right)\left(R^{2}\left(1-\sqrt{1-\frac{48 F^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}}\right)^{2}+\frac{48 R^{2} F^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}\right)= \\
\frac{R^{2}}{a^{2}+b^{2}+c^{2}}\left(\left(a^{2}+b^{2}+c^{2}-\sqrt{\left(a^{2}+b^{2}+c^{2}\right)^{2}-48 F^{2}}\right)^{2}+48 F^{2}\right)= \\
2 R^{2}\left(a^{2}+b^{2}+c^{2}-2 \sqrt{a^{4}+b^{4}+c^{4}-a^{2} b^{2}-a^{2} c^{2}-b^{2} c^{2}}\right)
\end{gathered}
$$

e) Since $(\alpha, \beta, \gamma)=\left(\frac{1}{s-a}, \frac{1}{s-b}, \frac{1}{s-c}\right), P=T,\left(p_{a}, p_{b}, p_{c}\right)=\left(\frac{1}{k(s-a)}, \frac{1}{k(s-b)}, \frac{1}{k(s-c)}\right)$,
where $k=\sum_{c y c} \frac{1}{s-a}=\frac{4 R+r}{s r}, d=O T=\sqrt{R^{2}-\frac{4 s^{2} r(R+r)}{(4 R+r)^{2}}}$ and $\sum_{c y c} p_{b} p_{c} a^{2}=\frac{4 s^{2} r(R+r)}{(4 R+r)^{2}}$ (see Distance between circumcenter O and
T) then for $D(M)=\frac{M A^{2}}{s-a}+\frac{M B^{2}}{s-b}+\frac{M C^{2}}{s-c}$ we obtain
$\max D(M)=\left(\frac{1}{s-a}+\frac{1}{s-b}+\frac{1}{s-c}\right)\left(\left(R+\sqrt{R^{2}-\frac{4 s^{2} r(R+r)}{(4 R+r)^{2}}}\right)^{2}+\frac{4 s^{2} r(R+r)}{(4 R+r)^{2}}\right)=$
$\frac{4 R+r}{s r} \cdot 2 R\left(R+\frac{\sqrt{R^{2}(4 R+r)^{2}-4 r s^{2}(R+r)}}{4 R+r}\right)=\frac{2 R\left(R(4 R+r)+\sqrt{R^{2}(4 R+r)^{2}-4 r s^{2}(R+r)}\right)}{s r}$
and

$$
\min D(M)=\frac{2 R\left(R(4 R+r)-\sqrt{R^{2}(4 R+r)^{2}-4 r s^{2}(R+r)}\right)}{s r}
$$

f) Since $(\alpha, \beta, \gamma)=(s-a, s-b, s-c), P=E,\left(p_{a}, p_{b}, p_{c}\right)=\frac{1}{s}(s-a, s-b, s-c)$, $\sum_{c y c} p_{b} p_{c} a^{2}=4 r(R-r), d=O E=R-2 r \quad$ (see Distance between circumcenter O and $E)$ then for $D(M)=(s-a) M A^{2}+(s-b) M B^{2}+$ $(s-c) M C^{2}$ we obtain

$$
\max D(M)=s\left((R+R-2 r)^{2}+4 r(R-r)\right)=4 s R(R-r)
$$

and

$$
\min D(M)=s\left((R-(R-2 r))^{2}+4 r(R-r)\right)=4 R s r=a b c
$$

Problem 5.

Let a, b, c be sidelengths of a triangle $A B C$. Find point O in the plane such that the sum

$$
\frac{O A^{2}}{b^{2}}+\frac{O B^{2}}{c^{2}}+\frac{O C^{2}}{a^{2}}
$$

is minimal.

Solution.

Let P be point on the plane with barycentric coordinates $\left(p_{a}, p_{b}, p_{c}\right)=$ $\left(\frac{1}{k b^{2}}, \frac{1}{k c^{2}}, \frac{1}{k a^{2}}\right)$, where $k=\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{2}}$.

Then by Leibnitz Formula

$$
\begin{gathered}
O P^{2}=\sum_{c y c} p_{a} O A^{2}-\sum_{c y c} p_{b} p_{c} a^{2}=\frac{1}{k} \sum_{c y c} \frac{O A^{2}}{b^{2}}-\frac{1}{k^{2}} \sum_{c y c} \frac{1}{c^{2} a^{2}} \cdot a^{2}= \\
\frac{1}{k} \sum_{c y c} \frac{O A^{2}}{b^{2}}-\frac{1}{k^{2}} \sum_{c y c} \frac{1}{c^{2}}=\frac{1}{k}\left(\sum_{c y c} \frac{O A^{2}}{b^{2}}-1\right) .
\end{gathered}
$$

Hence, $\sum_{c y c} \frac{O A^{2}}{b^{2}}=k \cdot O P^{2}+1$ and, therefore, $\min \sum_{c y c} \frac{O A^{2}}{b^{2}}=1=\sum_{c y c} \frac{P A^{2}}{b^{2}}$. That is $\sum_{\text {cyc }} \frac{O A^{2}}{b^{2}}$ is minimal iff $O=P$, where P is intersect point of cevians $A A_{1}, B B_{1}, C C_{1}$ such that $\frac{B A_{1}}{A_{1} C}=\frac{F_{c}}{F_{b}}=\frac{p_{c}}{p_{b}}=\frac{c^{2}}{a^{2}}, \frac{C B_{1}}{B_{1} A}=\frac{p_{a}}{p_{c}}=\frac{a^{2}}{b^{2}}, \frac{A C_{1}}{C_{1} B}=\frac{p_{b}}{p_{a}}=\frac{b^{2}}{c^{2}}$.

Problem 6. Let $A B C$ be a triangle with sidelengths $a=B C, b=C A, c=$ $A B$ and let s, R and r be semiperimeter, circumradius and inradius of $\triangle A B C$, respectively.

For any point P lying on incircle of $\triangle A B C$ let

$$
D(P):=a P A^{2}+b P B^{2}+c P C^{2}
$$

Prove that $D(P)$ is a constant and find its value in terms of s, R and r.

Solution.

Let I be incener of $\triangle A B C$ and let $\left(i_{a}, i_{b}, i_{c}\right)$ be baricentric coordinates of I. Since $\left(i_{a}, i_{b}, i_{c}\right)=\frac{1}{2 s}(a, b, c)$ and $P I=r$ then applying Leibnitz Formula for distance between points I and P we obtain $r^{2}=P I^{2}=\sum_{c y c} i_{a} \cdot P A^{2}-\sum_{c y c} i_{b} i_{c} a^{2}=$ $\frac{1}{2 s} \sum a P A^{2}-\frac{1}{4 s^{2}} \sum_{c y c} b c a^{2}=\frac{1}{2 s} \sum_{c y c} a P A^{2}-\frac{a b c \cdot 2 s}{4 s^{2}}=\frac{1}{2 s} \sum_{c y c} a P A^{2}-\frac{4 R r s}{2 s}=$ $\frac{1}{2 s} \sum a P A^{2}-2 R r$.

Hence, $\sum_{\text {cyc }} a P A^{2}=2 s\left(r^{2}+2 R r\right)$.
Area of a triangle, equation of a line and equation of a circle in barycentric coordinates.

1. Area of a triangle.

First we recall that for any two vectors \mathbf{a}, \mathbf{b} on the plane is defined skew product $\quad \mathbf{a} \wedge \mathbf{b}:=\|\mathbf{a}\|\|\mathbf{b}\| \sin (\widehat{\mathbf{a}, \mathbf{b}})$ and if $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ are Cartesian coordinates of \mathbf{a}, \mathbf{b},respectively, then

$$
\mathbf{a} \wedge \mathbf{b}=\operatorname{det}\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right)=a_{1} b_{2}-a_{2} b_{1} .
$$

Geometrically $\mathbf{a} \wedge \mathbf{b}$ is oriented (because $\mathbf{a} \wedge \mathbf{b}=-\mathbf{b} \wedge \mathbf{a}$) area of parallelogram defined by vectors \mathbf{a}, \mathbf{b}. Obvious that $\mathbf{a} \wedge \mathbf{b}=0$ iff \mathbf{a}, \mathbf{b} are collinear (in particular $\mathbf{a} \wedge \mathbf{a}=0$ for any \mathbf{a}).

Using coordinate definition of skew product easy to prove that it is bilinear, that is $(\mathbf{a}+\mathbf{b}) \wedge \mathbf{c}=\mathbf{a} \wedge \mathbf{c}+\mathbf{b} \wedge \mathbf{c}($ then also $\mathbf{a} \wedge(\mathbf{c}+\mathbf{b})=-(\mathbf{c}+\mathbf{b}) \wedge$ $\mathbf{a}=-(\mathbf{c} \wedge \mathbf{a}+\mathbf{b} \wedge \mathbf{a})=(-\mathbf{c} \wedge \mathbf{a})+(-\mathbf{b} \wedge \mathbf{a})=\mathbf{a} \wedge \mathbf{c}+\mathbf{a} \wedge \mathbf{b}) \operatorname{and}(p \mathbf{a}) \wedge \mathbf{b}=\mathbf{a} \wedge$ $(p \mathbf{b})=p(\mathbf{a} \wedge \mathbf{b})$ for any real p.

For any three point K, L, M on the plane which are not collinear we will use common notation $[K, L, M]$ for oriented area of $\triangle K L M$ which equal to $\frac{1}{2} \overrightarrow{K L} \wedge$ $\overrightarrow{K M}$ (in the case if K, L, M are collinear we obtain $[K, L, M]=0$). Regular area of $\triangle K L M$ is $\frac{1}{2}|\overrightarrow{K L} \wedge \overrightarrow{K M}|$.

Let P, Q, R be three point on the plane and $\left(p_{a}, p_{b}, p_{c}\right),\left(q_{a}, q_{b}, q_{c}\right),\left(r_{a}, r_{b}, r_{c}\right)$ be, respectively their barycentric coordinates with respect to triangle $A B C$. Then $\overrightarrow{A P}=$ $p_{a} \overrightarrow{A A}+p_{b} \overrightarrow{A B}+p_{c}$ and, similarly, $\overrightarrow{A Q}=q_{b} \overrightarrow{A B}+q_{c} \overrightarrow{A C}, \overrightarrow{A R}=r_{b} \overrightarrow{A B}+r_{c} \overrightarrow{A C}$.

Hence, $\overrightarrow{P Q}=\left(q_{b}-p_{b}\right) \overrightarrow{A B}+\left(q_{c}-p_{c}\right) \overrightarrow{A C}, \overrightarrow{P R}=\left(r_{b}-p_{b}\right) \overrightarrow{A B}+\left(r_{c}-p_{c}\right) \overrightarrow{A C}$ and, therefore,
$2[P, Q, R]=\overrightarrow{P Q} \wedge \overrightarrow{P R}=\left(\left(q_{b}-p_{b}\right) \overrightarrow{A B}+\left(q_{c}-p_{c}\right) \overrightarrow{A C}\right) \wedge\left(\left(r_{b}-p_{b}\right) \overrightarrow{A B}+\left(r_{c}-p_{c}\right) \overrightarrow{A C}\right)=$

$$
\begin{gathered}
\left(q_{b}-p_{b}\right)\left(r_{c}-p_{c}\right) \overrightarrow{A B} \wedge \overrightarrow{A C}+\left(q_{c}-p_{c}\right)\left(r_{b}-p_{b}\right) \overrightarrow{A C} \wedge \overrightarrow{A B}= \\
\left(\left(q_{b}-p_{b}\right)\left(r_{c}-p_{c}\right)-\left(r_{b}-p_{b}\right)\left(q_{c}-p_{c}\right)\right) \overrightarrow{A B} \wedge \overrightarrow{A C}=2[A, B, C] \cdot \operatorname{det}\left(\begin{array}{ll}
q_{b}-p_{b} & r_{b}-p_{b} \\
q_{c}-p_{c} & r_{c}-p_{c}
\end{array}\right) .
\end{gathered}
$$

Thus,

$$
[P, Q, R]=\operatorname{det}\left(\begin{array}{ll}
q_{b}-p_{b} & r_{b}-p_{b} \\
q_{c}-p_{c} & r_{c}-p_{c}
\end{array}\right) \cdot[A, B, C]
$$

Or, since

$$
\operatorname{det}\left(\begin{array}{ll}
q_{b}-p_{b} & r_{b}-p_{b} \\
q_{c}-p_{c} & r_{c}-p_{c}
\end{array}\right)=\left(q_{b}-p_{b}\right)\left(r_{c}-p_{c}\right)-\left(r_{b}-p_{b}\right)\left(q_{c}-p_{c}\right)=
$$

$p_{b} q_{c}+p_{c} r_{b}+q_{b} r_{c}-p_{c} q_{b}-p_{b} r_{c}-q_{c} r_{b}=\operatorname{det}\left(\begin{array}{ccc}1 & p_{b} & p_{c} \\ 1 & q_{b} & q_{c} \\ 1 & r_{b} & r_{c}\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}p_{a} & p_{b} & p_{c} \\ q_{a} & q_{b} & q_{c} \\ r_{a} & r_{b} & r_{c}\end{array}\right)$
(because $1-p_{b}-p_{c}=p_{a}, 1-q_{b}-q_{c}=q_{a}, 1-r_{b}-r_{c}=r_{a}$) and, therefore, we obtain more representative form of obtained correlation (Areas Formula)
(AF)

$$
[P, Q, R]=\operatorname{det}\left(\begin{array}{ccc}
p_{a} & p_{b} & p_{c} \\
q_{a} & q_{b} & q_{c} \\
r_{a} & r_{b} & r_{c}
\end{array}\right)[A, B, C]
$$

Using this formula we can to do important conclusion, namely:

Points P, Q, R are collinear iff $\operatorname{det}\left(\begin{array}{ccc}p_{a} & p_{b} & p_{c} \\ q_{a} & q_{b} & q_{c} \\ r_{a} & r_{b} & r_{c}\end{array}\right)=0$.
From that immediately follows that set of points on the plane with barycentric coordinates (x, y, z) such that $\operatorname{det}\left(\begin{array}{ccc}x & y & z \\ q_{a} & q_{b} & q_{c} \\ r_{a} & r_{b} & r_{c}\end{array}\right)=0$ is line which passed through points $Q\left(q_{a}, q_{b}, q_{c}\right)$ and $R\left(r_{a}, r_{b}, r_{c}\right)$, that is $\operatorname{det}\left(\begin{array}{ccc}x & y & z \\ q_{a} & q_{b} & q_{c} \\ r_{a} & r_{b} & r_{c}\end{array}\right)=0$ is equation of line in baycentric coordinates.

As another application of formula $(A F)$ we will solve the following

Problem 7:

Let $A A_{1}, B B_{1}, C C_{1}$ be cevians of a triangle $A B C$ such that $\frac{A B_{1}}{B_{1} C}=\frac{C A_{1}}{A_{1} B}=$ $\frac{B C_{1}}{C_{1} A}=\frac{1-t}{t}$.

Find the ratio $\frac{[P, Q, R]}{[A, B, C]}$.

Solution.

Let $\left(p_{a}, p_{b}, p_{c}\right),\left(q_{a}, q_{b}, q_{c}\right),\left(r_{a}, r_{b}, r_{c}\right)$ be, respectively, barycentric coordinates of points P, Q, R.Then $\frac{A_{1} B}{A_{1} C}=\frac{t}{1-t}=\frac{p_{c}}{p_{b}}, \frac{B_{1} C}{B_{1} A}=\frac{t}{1-t}=\frac{p_{a}}{p_{c}}$.

Noting that $\frac{p_{a}}{p_{c}}=\frac{t}{1-t}=\frac{t^{2}}{t(1-t)}, \frac{p_{b}}{p_{c}}=\frac{1-t}{t}=\frac{(1-t)^{2}}{t(1-t)}$ we can conclude that $p_{a}=k t^{2}, p_{b}=k(1-t)^{2}, p_{c}=k t(1-t)$, for some k and since $p_{a}+p_{b}+p_{c}=$ 1 we obtain $k\left(t^{2}+(1-t)^{2}+t(1-t)\right)=1 \Longleftrightarrow k\left(t^{2}-t+1\right)=1 \Longleftrightarrow k=$ $\frac{1}{t^{2}-t+1}$.

Hence,

$$
p_{a}=\frac{t^{2}}{t^{2}-t+1}, p_{b}=\frac{(1-t)^{2}}{t^{2}-t+1}, p_{c}=\frac{t(1-t)}{t^{2}-t+1}
$$

Since $\frac{q_{c}}{q_{a}}=\frac{1-t}{t}$ and $\frac{q_{b}}{q_{a}}=\frac{t}{1-t}$ we, as above, obtain

$$
q_{a}=\frac{t(1-t)}{t^{2}-t+1}=p_{c}, q_{b}=\frac{t^{2}}{t^{2}-t+1}=p_{a}, q_{c}=\frac{(1-t)^{2}}{t^{2}-t+1}=p_{b}
$$

that is $\left(q_{a}, q_{b}, q_{c}\right)=\left(p_{c}, p_{a}, p_{b}\right)$ and, similarly, $\left(r_{a}, r_{b}, r_{c}\right)=\left(p_{b}, p_{c}, p_{a}\right)$.
Hence,

$$
\begin{gathered}
\frac{[P, Q, R]}{[A, B, C]}=\operatorname{det}\left(\begin{array}{ccc}
p_{a} & p_{b} & p_{c} \\
p_{c} & p_{a} & p_{b} \\
p_{b} & p_{c} & p_{a}
\end{array}\right)= \\
p_{a}^{3}+p_{b}^{3}+p_{c}^{3}-3 p_{a} p_{b} p_{c}=\left(p_{a}+p_{b}+p_{c}\right)^{3}-3\left(p_{a}+p_{b}+p_{c}\right)\left(p_{a} p_{b}+p_{b} p_{c}+p_{c} p_{a}\right)= \\
1-3\left(p_{a} p_{b}+p_{b} p_{c}+p_{c} p_{a}\right)=\frac{1}{\left(t^{2}-t+1\right)^{2}}\left(t^{2}(1-t)^{2}+(1-t)^{3} t+t^{3}(1-t)\right)= \\
\frac{t(1-t)\left(t(1-t)+(1-t)^{2}+t^{2}\right)}{\left(t^{2}-t+1\right)^{2}}=\frac{t(1-t)}{t^{2}-t+1}
\end{gathered}
$$

Equation of a circle in barycentric coordinates.

Let O be center of a circle with radius R. And let P be any point on lying on this circle. If $\left(o_{a}, o_{b}, o_{c}\right)$ and $\left(p_{a}, p_{b}, p_{c}\right)=(x, y, z)$ be, respectively, barycentric coordinates of O and P then
by Leybnitz Formula $O P^{2}=\sum_{c y c} p_{a} O A^{2}-\sum_{c y c} p_{b} p_{c} a^{2} \Longleftrightarrow$
(EC)

$$
R^{2}=x O A^{2}+y O B^{2}+z O C^{2}-y z a^{2}-z x b^{2}-x y c^{2}
$$

In particular, if O and R be circumcenter and circumradius of $\triangle A B C$ then $x O A^{2}+y O B^{2}+z O C^{2}=R^{2}(x+y+z)=R^{2}$ and, therefore,
(ECc)

$$
y z a^{2}+z x b^{2}+x y c^{2}=0
$$

is equation of circumcircle of $\triangle A B C$.
By replacing O and R in (EC) with I (incenter) and r (inradius) we obtain $r^{2}=x I A^{2}+y I B^{2}+z I C^{2}-y z a^{2}-z x b^{2}-x y c^{2}$.Since $I A=\frac{b+c}{a+b+c} \cdot l_{a}$, where l_{a} is length of angle bisector from A and $l_{a}=\frac{2 \sqrt{b c s(s-a)}}{b+c}$ then $I A^{2}=\frac{(b+c)^{2}}{4 s^{2}} \cdot \frac{4 b c s(s-a)}{(b+c)^{2}}=\frac{b c(s-a)}{s}$ and, cyclic, $I B^{2}=\frac{c a(s-b)}{s}, I C^{2}=$ $\frac{a b(s-c)}{s}$. Hence,
(EIc) $\quad r^{2} s=x b c(s-a)+y c a(s-b)+z a b(s-c)-y z a^{2}-z x b^{2}-x y c^{2} \Longleftrightarrow$ $x b c(s-a)+y c a(s-b)+z a b(s-c)-y z a^{2}-z x b^{2}-x y c^{2}=(s-a)(s-b)(s-c)$
is equation of incircle.

More applications to inequalities.

For further we will use compact notations for R_{a}, R_{b}, R_{c} for $A P, B P, C P$ respectively.

Application1.

For triangle $\triangle A B C$ with sides a, b, c and arbitrary interior point P holds inequalities:

$$
\frac{a^{2}+b^{2}+c^{2}}{3} \leq R_{a}^{2}+R_{b}^{2}+R_{c}^{2}
$$

Proof.
Applying Lagrange's formula to the point $G\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ (medians intersection point) and point P, we obtain

$$
\begin{gathered}
P G^{2}=\frac{1}{3}\left(P A^{2}-G A^{2}\right)+\frac{1}{3}\left(P B^{2}-G B^{2}\right)+\frac{1}{3}\left(P C^{2}-G C^{2}\right)= \\
\frac{1}{3}\left(R_{a}^{2}+R_{b}^{2}+R_{c}^{2}\right)-\frac{1}{3} \cdot \frac{4}{9}\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)=\frac{1}{3}\left(R_{a}^{2}+R_{b}^{2}+R_{c}^{2}\right)-\frac{4}{27} \cdot \frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right) . \\
\text { Hence, } P G^{2}=\frac{1}{3}\left(R_{a}^{2}+R_{b}^{2}+R_{c}^{2}\right)-\frac{a^{2}+b^{2}+c^{2}}{9} \text { and that implies inequality } \\
R_{a}^{2}+R_{b}^{2}+R_{c}^{2} \geq \frac{a^{2}+b^{2}+c^{2}}{3}
\end{gathered}
$$

with equality condition $P=G$ (centroid-medians intersection point).

Application2.

Let x, y, z be any real numbers such that $x+y+z=1$ and, which can be taken as barycentric coordinates of some point P on plane, that is $\left(p_{a}, p_{b}, p_{c}\right)=$ (x, y, z).

Then $\sum_{c y c} x O A^{2}-\sum_{c y c} y z a^{2}=O P^{2} \geq 0$ yields inequality
(R)

$$
\sum_{c y c} x R_{a}^{2} \geq \sum_{c y c} y z a^{2}
$$

where $R_{a}:=O A, R_{b}:=O B, R_{c}:=O C$ and O is any point in the triangle $T(a, b, c)$.

In homogeneous form this inequality becomes
(Rh) $\quad \sum_{c y c} x \cdot \sum_{c y c} x R_{a}^{2} \geq \sum_{c y c} y z a^{2}$
which holds for any real x, y, z.
If $x:=w-v, y:=u-w, z:=v-u$ then $\sum_{c y c c} x=0$ and we obtain $0 \geq$ $\sum_{c y c}(u-w)(v-u) a^{2} \Longleftrightarrow$

$$
\sum_{c y c} a^{2}(u-w)(u-v) \geq 0 \text { (Schure kind Inequality). }
$$

By replacing (x, y, z) in (R) with $\left(\frac{x}{R_{a}^{2}}, \frac{y}{R_{b}^{2}}, \frac{z}{R_{c}^{2}}\right)$ we obtain $\sum_{\text {cyc }} \frac{x}{R_{a}^{2}} \cdot \sum_{\text {cyclic }} \frac{x}{R_{a}^{2}}$. $R_{a}^{2} \geq \sum_{c y c} \frac{y}{R_{b}^{2}} \cdot \frac{z}{R_{c}^{2}} a^{2} \Longleftrightarrow$
(RR) $\quad \sum_{c y c} x R_{b}^{2} R_{c}^{2} \cdot \sum_{\text {cyclic }} x \geq \sum_{\text {cyc }} y z a^{2} R_{a}^{2}$.
By substitution $x=a R_{a}, y=b R_{b}, z=c R_{c}$ in (*) we obtain $\sum_{c y c l} a R_{a} R_{b}^{2} R_{c}^{2}$. $\sum_{c y c} a R_{a} \geq \sum_{c y c} b R_{b} c R_{c} a^{2} R_{a}^{2} \Longleftrightarrow \sum_{c y c} a R_{b} R_{c} \cdot \sum_{c y c} a R_{a} \geq a b c \cdot a R_{a} \Longleftrightarrow$
(H) $\sum_{c y c} a R_{b} R_{c} \geq a b c$ (T.Hayashi inequality).
08.06.18 To be continued....

Footnote:
Sign \star before a problem means that this problem is proposed by author of these notes.

